
Numerical simulations on the 4D Heisenberg spin glass

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys. A: Math. Gen. 28 747

(http://iopscience.iop.org/0305-4470/28/3/027)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 01:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math Gen. 28 (1995) 747-754. Printed in the UK 

Numerical simulations on the 4D Heisenberg spin glass 

Barbara Coluzzi 

Italy 
Dipartimento di Fisica. Universith di Roma La Sapienza, Piazzale Aldo Mora 2. 00185 Rome. 

Received 27 October 1994 

Abstract. We study the ID Heisenberg spin-glass model with Gaussian nearest-neighbour 
interactions. We use finite-size scaling to analyse the dab. We find a behaviour consistent 
with a finite temperature spin-glass transidon. Our estimates for the critical exponents agree 
with the results horn e-expansion. 

1. Introduction 

The lower critical dimension 4 0  dl of the short-range models remains one of the most 
controversial questions in spin-glass theory [l-31. In the last ten years a consistent number 
of works have been devoted to studying the king model, which seems to be 14, SI very 
close to dl in d = 3. In the case of the short-range isotropic Heisenberg spin glass, the 
conclusions of various computer simulations in d = 3 16, 71 agree that the system is below 
dj. Using domain-wall renormalization-group techniques, it was argued [2,  31 that d1 = 4 
for this model. To our knowledge. there are no previous numerical simulations on the 4D 
Heisenberg spin glass apart from an early work by Stauffer and Binder [SI, which studied 
the time dependence of the Edward-Anderson order parameter 191 qw\(t) for vector spin 
glasses from d = 2-6. They observed a change in the behaviour of the Heisenberg model 
in d = 4 but concluded that probably there was no finite-T phase transition. 

We have studied the 4D isotropic Heisenberg spin-glass model with Gaussian nearest- 
neighbour interactions. We have simulated small lattices (with linear size from L = 3-S), 
using finite-size scaling to analyse the data. Our main conclusion is that d = 4 seems to be 
well above the dt of the model. 

In section 2 after defining the model and the quantities we have measured we present 
a theoretical estimate for critical exponents obtained from &-expansion results [lo]. In 
section 3 we discuss the computer simulations in some detail. Finally, in section 4 we 
present the numerical results and the conclusions. 

2. The model 

The Hamiltonian of the model is given by 

where the spins {ut] belong to the unit three-dimensional sphere. The sum runs over the 
nearest-neighbour pairs in a simple hypercubic lattice with periodic boundary conditions 
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748 B C o l u i  

and size V = L4. The interactions Jij are quenched independent random variables with a 
symmetric Gaussian distribution 

The spin-glass correlation function can be defined as 

where ((.)) means thermodynamic average and 
for distances r >> b o  we 

expect Gs&) o( e-r/bso, where we have introduced the spin-glass correlation length tSc. 
The divergence of $SG when the critical temperature T, is approached, 

means average over samples. 
In the thermodynamic limit, in the paramagnetic phase, 

$SG (T - TC)-” (4) 
is characterized by the critical exponent U. The power-law decay of the correlation function 
for large r at the critical point 

(5) 
1 

Gso(r) a - 
is described by the anomalous dimension 7. 

In order to understand the behaviour of the model, it is interesting to introduce two 
independent replicas of the system, with the same disorder configuration. Since we are 
dealing with a vector spin glass, the overlap is a second-rank tensor in spin space. We can 
define 

where (U ]  and (7) are the spins of the two replicas and p, U = 1,3  refer to spin components. 
In OUT case the system is completely isotropic, therefore we expect to deal with one spin- 
glass order parameter q .  It is convenient [3] to consider the rotational invariant quantity 

The order-parameter probability distribution P ( q )  is correspondingly given by 

P ( q )  (S (q  - Q)). (8) 
One of the quantities we have calculated is the spin-glass susceptibility, defined as 

It can be easily verified that this definition is equivalent to XSG = 3V(92),  the factor 3 having 
been inserted to obtain liir,, x~G(L, T )  = 1, as in the king case. In the thermodynamic 
limit we expect the spin-glass susceptibility to diverge when T, is approached from the 
paramagnetic phase as 

XSG(T) (T - TC)-‘ (10) 
where, by hyperscaling, y = (2 - v) U. 



~. 

Numerical simulations on the 4D Heisenberg spin glass 749 

If T, = 0 and the system is below dl, we still expect <sG(T) and X S G ( T )  to behave near 
the critical point according to (4) and (lo), respectively, diverging with power laws. We 
expect exponential divergences for d -+ 4, because U, y -+ 00 in this limit. In the 3D 
Ising spin glass the difficulty in distinguishing between the system being at or above d1 [4] 
is correlated to the large value of U obtained from finitesize scaling analysis. We will see 
that this seems not to be the case in our model. 

The Binder parameter has proved very successful in establishing the presence or the 
absence of a finite-T phase transition. Its definition for the Ising spin-glass model [ l l ]  
can easily be extended to the Heisenberg case. In the high-temperature region, where we 
can neglect interactions, the 4’” are approximately independent variables with the same 
symmetric Gaussian distribution of width - V-’/’. The function 

is a dimensionless parameter defined so that g < 1. From an explicit calculation, we have 
obtained g - 1 / V  for T -+ CO. In the thermodynamic limit we therefore expect g ( T )  = 0 
above T, and g ( T )  = 1 for T = 0. If there is a T = 0 singularity we expect the curves of 
g ( L ,  T) against T for different L to come together as T + 0, while for a finite-T transition 
we expect them to intersect at Tc, which allows to locate the critical point quite precisely. 

The mean-field spin-glass critical temperature TFF for m-component spins belonging 
to the unit sphere, with coordination number z and J; = I ,  is approximately, for large z ,  
Tcm z &/m. In our case m = 3 and z = 8, so that 

- 

Tcm N 0.94. 112) 

This value is a reasonable upper limit to the temperature range in which we can expect a 
phase transition. 

If there is a non-zero Tc, the behaviour of the system at the transition point is 
characterized by two independent critical exponents. We have obtained a theoretical estimate 
for the spin-glass correlation length exponent U and the anomalous dimension q from E- 

expansion results. This is possible in the Heisenberg case because the coefficients, calculated 
to the third order by Green [lo], show the expected oscillatory behaviour: 

q = -0.2.5 + 7.7333 x lo-’ E’ - 7.8127 x lo-’ c3 + O(e4) 

u-’ - 2 + q = -1.2 E + 1.164 E* - 1.4735 c3 + O ( E ~ )  
(13) 

where E = d. - d = 6 - d, d, = 6 being the upper critical dimension of short-range 
spin-glass models. 

We have used the simple resummation method of the Pad6 approximants, in which the 
series is replaced by the ratio P [ N ,  D] of a polynomial of degree N to one of degree D. 
The values obtained for E = 2 are presented in table 1. By comparing results from P[  1,2] 
and P[2,  11 we can estimate, for the 4D Heisenberg spin glass, 

U Y 0.8 q N -0.4 (14) 
with a larger uncertainty on the value of q ,  

Table 1. v and q from the corresponding P[N, D]. the IOW and D Lhe column index. 

” v 
0.7096 0.8657 -0.2256 -0.4945 
0.8224 -0.2976 
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3. Simulations 

We have simulated hypercubic lattica in 4D with periodic boundary conditions and linear 
sizes L = 3 , 4  and 5. The number of samples is 400,200 and 100, respectively. Simulations 
have been performed in the region T < 1, down to T = 0.4 for L = 3, to T = 0.45 for 
L = 4 and to T = 0.5 for L = 5. We will see that T = 0.5 seems to be very close to the 
T, of our model. 

In order to thermalize our samples, we have used simulated tempering [12-141, already 
proved very efficient for king spin glasses IS.151. The system is allowed to change 
temperature between a fixed set of [pa], where for simplicity we can take ,!?.+I > Bm, j3 = 
1 f T becoming a dynamical variable. In our case the system consists of the two independent 
replicas, so that j3 eventually changes simultaneously for both of them and at equal times 
their temperature is the same. The Hamiltonian is therefore X [ C ]  = 'H[u] + X [ r ] .  

The stationary probability distribution for the configuration C at Bn is given by 

P,(c, n )  a e-wuJC*nl 'HexJC, n I =  B"'H[Cl- go (15) 
where we have defined the extended Hamiltonian 'HeXt[C. n]. {g,,] being a set of arbitrary 
numbers chosen a priori. After reaching the equilibrium, the system moves between the 
{ p " )  remaining at the equilibrium. In order to obtain the same stationary probability for all 
the different temperatures we have to take g, = &Fa, F, being the total free energy at 
This means that, for n' = n h 1, at the first order in Aj3 = 

A%xt = AB'H - (gn. - g n )  (16) 
where 'H is the instantaneous value and ('Hn) is the statistical expectation value at j3,, of the 
total energy. 

Our simulated tempering steps are just Monte Carlo steps, during which obviously the 
two replicas evolve independently, at the end of which the entire system is allowed to 
change temperature, the new j3"~ suggested being with equal probability. It must be 
emphasized that j3 eventually changes for the two replicas simultaneously, so that the overlap 
tensor (6) at equal times always represents the overlap tensor at the same temperature. 

Since we are dealing with a model with continuous degrees of freedom, there is an 
arbitrary parameter in the Metropolis algorithm, corresponding to the maximum rotation 
angle e,, permitted to single spins in one step. We have chosen emar in order to obtain 
the acceptance as close to 

We have been careful in fixing the set of temperatures for the different sizes. Two 
contiguous values of pn have to be as different as possible to help in decorrelating without 
making the corresponding transition probability too small. We have used as a basic criterion 
the condition that there was a non-negligible overlap in the values of the energy computed 
at contiguous ,& for each sample. In our case this was verified by choosing equidistant 
temperatures, with AT = 0.1 for L = 3 and AT = 0.05 for L = 4 and 5. In order to 
perform simulations down to lower temperatures, particularly in the L = 5 case, it would 
be necessary to decrease AT with a considerably greater amount of computer time. 

We have used a slow cooling procedure to take the system near the equilibrium at the 
lowest temperature. Statistics were collected over the last part of the about 3000Lj3,2 MC 
steps at each temperature, to evaluate approximately the corresponding (E,). The next 
about 70000 for L = 3, 200000 for L = 4 and 400000 for L = 5 simulated tempering 
steps were used to thermalize the system and to improve iteratively [15] the estimates for 
the (g,, - g,,]. Finally, all the quantities we were interested in were calculated in the last 
part of the simulated tempering cycle, of about 140000 steps for L = 3, half a million steps 
for L = 4 and more than a million steps for L = 5. 

- 0"): 
AB(X - $(('Hn,) + (zn))) 

as possible. 
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In simulated tempering, we can estimate the statistical expectation value (Un) of an 
observable U at ,9. as 

where we have defined the frequency fn observed at p,,, N being the total number of steps. 
With the given choice for the {g.], we expect fz - l / n T ,  nT being the total number of 
temperatures considered (in our case, nT = I for L = 3 and nT = 8 for L = 4 and 
5). The closeness of the fn observed at different temperatures represents one of the main 
verifications that simulated tempering works well. In the last part of the cycle we have 
obtained max{fn] < 4min{ f-1 for each sample, the 3 being compatible with the expected 
values for the different n T .  We have also checked how many ne times the system was 
moving from one extreme to the other of the temperature range, obtaining for each sample 
ne z 100 in the L = 3 case and ne > 200 for L = 4 and 5, reasonably large values for the 
system really exploring the entire phase space. 

In order to check thermalization, besides verifying that the ( 4 " )  were compatible with 
zero for each sample, we have divided the last part of the simulated tempering cycle into 
five equal intervals, checking that the various computed quantities show no evident drifts. 
This was verified also for the spin-glass susceptibility (9) and the fourth moment of the 
P(q)  (equation (8)) in the L = 5 case. 

The simulations have taken in all about 6 months on a Dec3000-workstation. 

4. Results and discussion 

Our numerical results for the spin-glass susceptibility (9) and the Binder parameter (1 I )  
are presented in figures 1 and 2, respectively. The behaviour of the curves of g(L, T )  as 
a function of T for the different lattice sizes strongly suggests the presence of a finite-T 
spin-glass transition, the non-coincidence of the intersection points being presumably due 
to systematic corrections to finite-size scding. In order to confirm that curves really splay 
out below the critical point, as expected in the presence of long-range spin-glass order, it 
would be obviously preferable to obtain data on the g ( L ,  T )  down to lower temperatures 
and for larger lattice sizes. 

If scaling is satisfied, near Tc we expect 

XSG(L,  T )  = LZ-"fso ((T - T,) 2,"") 
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Figure 1. The spin-glass susceptibility 2% as a 
function of p for the different lattice sizes. The 
curves are only to join neighbouring points. 
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Figure 3. The scaled spin-glass snscepribil- 
ity X S O / L ~ - ~  as a function ofthe scaled re- 
duced temperanrre (T - TJL'I". The c w e  
is just to guide the eye. 

Figure 4. The Binder parameter g us a function of 
the scaled reduced temperatare (1 - T,)L1/", The 
curye is just to guide the eye. 

where YSG and J are scaling functions while U and 7 are respectively the spin-glass 
correlation length exponent (4) and the anomalous dimension (5) previously defined. 

From the I(SO scaling law (18), using a standard three-parameter fitting routine, we have 
obtained 

Tc = 0.50 i O . 0 6  U = 0.61 f0.08 2 - 7 r= 1.8 iO.5  (20) 
while requiring that the Binder parameter data scale according to (19). with a more simple 
two-parameter fit, we have found 

(21) 
In figures 3 and 4 we present the corresponding scaling plots. It must be emphasized that 
statistical errors quoted here are just a delimitation of the range of values beyond which our 

T, = 0.52 z!z 0.02 U = 0.89 f 0.06. 
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data do not scale well. Systematic errors due to corrections to finite-size scaling cannot be 
evaluated easily but could be quite important, because of the small lattice sizes considered. 

Our results agree well with a non-zero Tc for the 4D short-range Heisenberg spin 
glass (l), giving in this case of Gaussian nearest-neighbour interactions (2) the value 
T, e 0.5, that is, however, well below the TTF N 0.94 (12) of the modeI. 

Systematic corrections to finite-size scaling may explain the discrepancy between the 
estimates for U obtained from the xso (20) and the Binder parameter (21), respectively. Our 
most significant result is nevertheless that U seems not to be lage, smaller than 1. As we 
have already pointed out, a large value of U would suggest the system being at d N 4, since 
we expect U, y + 00 for d + dl. In this case, therefore, the result U < 1 is consistent 
with the short-range Heisenberg spin-glass model being well above dl in d = 4. 

Comparing the two estimates for U ,  we can obtain the approximate value U N 0.75, 
that agrees well with the theoretical estimate (14) U rr 0.8. From the hyperscaling law 
(Y = 2 - d U we can also estimate the corresponding value of a, describing the critical 
behaviour of the specific heat. We find ct e -1, accidentally not far from the mean-field 
value. 

Finally, our statistics are inadequate to obtain a significant estimate for 0. The value 
found from the XSG data (ZO), 2-9 = 1.8&0.5, is, however, compatible with the theoretical 
estimate (14) q = -0.4, even if not in good agreement. 

We have simulated small lattices, with a rather small amount of computer time. More 
accurate simulations are necessary in order to confirm the presence of a finite-T phase 
transition in the 4D short-range Heisenberg spin-glass model. improving our estimates for 
the critical exponent. Simulated tempering seems to be highly suitable for this purpose. 
It might also be interesting to devote some attention to the behaviour of P ( q ) ,  to our 
knowledge not yet extensively studied in the case of short-range vector models. 
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